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Abstract

The affective state of children with autism is not always ex-
pressed or discernible through observational cues, a phenomenon
which is further confounded by vast variability across individu-
als on the autism spectrum. Electrodermal Activity (EDA) is a
physiological signal indicative of a person’s arousal and thus af-
fording us new insights into a child’s inner affective state. In
this work we study EDA cues of children with autism while in-
teracting with an Embodied Conversational Agent (ECA). EDA
is affected by both cognitive and social factors. In this paper,
we consider the child’s verbal response latency as the overt be-
havioral cue and link it with his/her physiology. A classification
experiment was performed to differentiate between physiological
cues of high and low verbal response latency intervals, based on
the assumption that different kinds of mechanisms are triggered
in each case. Our results indicate that physiological patterns be-
tween short and long verbal response latencies are more discrim-
inative for some children than others, suggesting the existence
of multiple levels of cognitive and social efforts across children.
They also show variable levels of arousal response, which can
provide a complementary view of the observational cues.

Index Terms: Electrodermal response, verbal response la-
tency, affective state, cognitive and social activity, autism

1. Introduction
Social and emotional deficits are one of the main traits describing

Autism Spectrum Disorders (ASD). Children with autism find it
more difficult to express their conscious feelings [1] and show
different patterns in perceiving and conveying emotional infor-
mation [2] than their typically developing peers. In light of these
findings, having a way to monitor the internal state of children
with autism might afford us new insights into the mechanism of
their interaction and affectivity [3, 4].

The sympathetic nervous system is associated with arousal
changes, caused by emotion, cognition, or attention. Sweat is
a good indicator of increased sympathetic activity and can be
tracked through changes in the conductance of the skin surface.
Electrodermal Activity (EDA) consists a sensitive measure of
skin conductance, thus can be used to provide an estimate of emo-
tional, cognitive and other kinds of arousal [3, 5].

Children with ASD have difficulty in exchanging informa-
tion especially in social interaction, and this may not be always
be apparent in the observable audio-visual cues. For instance it
is hypothesized that such circumstances may be associated with
high levels of (internal) stress. This inherent gap between their
observable behavior and their inner affective state is not well
understood, and can be potentially bridged by monitoring their
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physiology. In this paper, we investigate the association between
children’s verbal response latency and their physiological state in
spoken dialog settings. The duration of verbal response latencies
is reported to be very important for children, as it can be indica-
tive of their sometimes conflicting mental procedures [6]. Since
EDA reflects aspects of the underlying mental state, and specif-
ically of the amount of socio-cognitive load [5], we explore if
physiological signals of long and short verbal response latency
regions should exhibit different feature-level patterns. The quan-
titative analysis of physiological cues during the response latency
areas can provide a better understanding of a child’s behavior.
Similar links between verbal latency and physiology have been
studied for assessing anxiety levels [7], where response latencies
and the corresponding physiological data were distinct for low
and high anxiety subjects. To the best of our knowledge, the link
between EDA and verbal response latency has not been examined
extensively, and this analysis, motivated also by observations on
our data (Section 3), is an effort to study this association.

Our data come from the “Rachel ECA Interaction Corpus,”
containing spoken dialog recordings of a child interacting with
an ECA, named Rachel, and his/her parent. The Rachel system
[8] aims to encourage children to participate in social interactions
and display their emotional reasoning abilities (Section 2).

In this paper we differentiate between children’s physiolog-
ical patterns occurring after Rachel’s turns according to whether
they belong to a short or long verbal response latency inter-
val. Based on the assumption that long latencies are likely to
be caused by demanding cognitive events and/or stressful social
interactions, we hypothesize that inner mechanisms produced in
these intense affective activity intervals will be reflected on chil-
dren’s physiology. We test this by automatically classifying the
child’s EDA cues following Rachel’s questions into whether they
occur in a short or long verbal response latency region.

Our analysis through classification experiments indicates
that EDA patterns convey information about a child’s inner state,
since they differ according to the duration of verbal response la-
tency with respect to Rachel’s turns (Section 5.2). Our findings
also show that aroused affectivity is present both in low and high
verbal response latency intervals, depending on the child (Sec-
tion 6). This suggests that even though there may be no obvious
(audible/visible) signs of arousal, EDA might give a complemen-
tary view of a child’s state, as proposed in other studies [9]. This
information could be incorporated in dynamically personalized
dialog interfaces that are targeted for this special population.

2. Description of Data
Our experiments were based on data from the “USC Rachel ECA
Interaction Corpus.” This ECA used controlled interaction sce-

1319



2 4 6
Latency (sec)

152

140

(a) S1:

120

100
@
€ 8
3 &
3

40

20
o

(b) S2:

2 4 s
Latency (sec)

176

5

0
Latency (sec)

(c) S3:

181

o 5 10
Latency (sec)

(f) S6: 245

Counts

10

(d

0 5 10 15 2
Latency (sec)

(g) S7: 212

25

0 2 4 6 8
Latency (sec)

(h) S8: 57

5 0
Latency (sec)

S4.

207

140f
120}

100}
@

15 o 2 4
Latency (sec)

(e) S5: 205

2 4 6 8 10
Latency (sec)

(1) S9: 81

Figure 1: Total count (written at the legend) and distribution of the nine subjects’ verbal response latencies (in seconds) with respect to
Rachel’s turns. The vertical solid black bar at each subfigure represents 70th percent threshold (to the left).

narios providing a structured way to elicit natural conversational
data, that can be more reliably compared both between and within
the subjects. The Rachel ECA was controlled in a Wizard of Oz
paradigm, in which a hidden experimenter controls Rachel’s be-
havior using a graphical interface.

The Rachel study [8] consists of four sessions recorded with
a smart-room setup, having two shot-gun and two lapel (for the
child and the parent) microphones, three Sony High-Definition
cameras and four Affectiva Q Sensors. The sensors were worn
by the child and the parent on each of their opposite-side wrist
and ankle. They measure EDA, temperature and z, y, z-axis
acceleration. For the purpose of this paper, we only used the
EDA values measured on children’s wrist.

This study analyzed data collected from nine verbally fluent
subjects diagnosed to be on the Autism spectrum, seven boys and
two girls, whose ages are given in Table 1. During the recordings,
we made sure to keep consistent the Wizard-Of-Oz moderator for
each subject. Every child participated in 4 separate sessions with
Rachel, each lasting on average 25 minutes.

Table 1: Subjects’ age information.
[Subject  [[ ST [ S2 [ S3 [ 54 [ S5 ] 56 [ 57 [ S8 [ 59 |
[AgeGears) [[ 12 [ 7 [ 0] 7 [ 7 [ 63878

3. Verbal Response Latencies

“Verbal response latency” is the duration of the time interval in
which there is a turn-taking between two interlocutors. In this
study, we examined children’s verbal response latencies with re-
spect to Rachel’s turns. We chose to examine this type of re-
sponse latency, because Rachel’s behavior is controllable and re-
mains consistent across subjects, thus minimizing the effect of
the other interlocutor variability on the child’s behavior.

Plotting the histograms of verbal response latencies for each
child, we notice that they usually appear to be skewed towards
the left. This means that the most common response latencies are
short, while long latencies are more rare. Based on this observa-
tion, we drew a threshold at the 70°™ percentile of latency values,
which was computed from the data of each child separately, in
order to distinguish between short and long verbal response la-
tencies (Figure 1). Negative values of this measure mean that the
child started talking before Rachel had finished the current turn.

Going through various turn taking instances, we made sev-
eral interesting observations. There were examples during the
dialog when Rachel asked a yes/no question to the child, such
as whether he/she had played on a computer before, and then to
follow up she asked an open question, e.g. to describe the kinds
of games he/she plays on the computer. In the first case, where
the question is simple and elicits low cognitive effort, short ver-
bal response latencies occurred, while long latencies occurred in
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the second case, where the child had to be more mentally alert
in order to provide a description. Long verbal response laten-
cies also happened at the beginning of the joint story-telling task
with Rachel, probably because the child tried to adapt to Rachel’s
questions. There were also many examples of children who took
a long time to respond after having given a wrong answer once
and were asked to try again, which might have worked as a stress-
ful stimuli for them. In these long latency examples, it is rea-
sonable to assume that high cognitive activity or stressor events
occurred. Since physiological signals, and particularly EDA, are
linked with these phenomena, we hypothesize that physiologi-
cal patterns belonging in regions of long latency will be different
than the corresponding patterns of short latency regions.

An example of interplay between verbal response latencies
and physiological signals is shown in figure 2. The blue solid
line in the figure represents the EDA signal of the child in a given
moment of a session. The red dashed and black dashed-dotted
vertical lines are positioned at the end of Rachel’s turns and the
corresponding beginning of child’s turns respectively. We no-
tice that in instances where the dashed and dashed-dotted vertical
lines are very close to each other, the EDA signal seems more
constant. In cases however where there is a long interval be-
tween Rachel’s and the child’s turns, there appears a change in
the EDA signal. It is noteworthy that the change of EDA might
not occur instantly, but can happen a few seconds after the stim-
ulus. Similar slow variation of physiological signals, including
EDA, have been observed in a study recognizing human frustra-
tion [10]. Motivated by this, we analyze the child’s EDA signals
after Rachel has stopped speaking over a time interval of dura-
tion ranging from 5 to 10 seconds. We call these “Rachel’s turns
effect intervals” and a graphical representation of three such con-
secutive intervals is shown in figure 3.

4. Extraction of Physiological Features
The sampling frequency of EDA signals was 8Hz and their val-
ues were measured in micro-Siemens (.5). To remove noise
artifacts, EDA signals were filtered with a Hanning window of
length 200 points (25 seconds). Three groups of features were
extracted: i) time-, ii) extrema- and iii) frequency-based features.
These were inspired from other behavioral studies [10, 11]. Mo-

Rachel stops
speaking

Rachel stops
speaking

Rachel stops
speaking

Rachel turn Child effect
Interval

Rachel turn | Child Rachel JChild effect
effect  turh Interval
hterval

Figure 3: Plot of Rachel’s turns effect intervals.
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Figure 2: Child’s raw physiological signal (solid line), ending of Rachel’s turns (dashed vertical line), starting of child’s turn (dashed-
dotted vertical line), and corresponding transcripts for three consecutive verbal response latency intervals.

tivated by our observation that the EDA response might not occur
instantly (Section 3), we computed all features over varying du-
ration windows of 2,4,6,8 and 10 seconds and with 1 second step.

Let = denote the original filtered EDA signal measured from
the child’s wrist and z(n) its n'" sample.

Time-based features were extracted using the original filtered
signal and its dynamic representation, and are:

1. {%;}{_,: the first four moments of x.

2 {382}
Ist and 2nd order difference of x, defined as 6'(n) =
|z(n) — x(n —1)| and 6%(n) = |z(n) — z(n — 2)|.

3. {&l, & } : the first four moments of the relative ab-
solute 1st and 2nd order difference of x, defined as
¢'(n) = |(x(n) —x(n—1))/z(n)| and &(n) =
|(z(n) — x(n — 2))/x(n)].

Time-based features 2 and 3 were extracted in order to ex-
amine both absolute and relative values of the dynamic represen-
tation of the EDA signal, since the first reflects the amount of
arousal, while the second shows the signal’s trends.

The second group of features was related to extrema values.
We separated the extrema into peaks and valleys and computed
their height and width (in seconds). In a given window interval
we extracted the following: number of peaks (Pn), number of
valleys (Vn), mean peak height (Pmh), mean peak width (Pmw),
mean valley height (Vmh), mean valley width (Vmw), ratio of
mean peak height to mean peak width (Phwr), ratio of mean val-
ley height to mean valley width (Vhwr).

The third group involved frequency domain characteristics.
Since EDA is a low frequency signal, we only examined frequen-
cies in the interval [0, 4] Hz. We computed the spectrogram of
x using K = 64 sample Fourier Transform and for all men-
tioned window lengths. Let F'(m, k) be the spectrogram value
of the m*" window (m = 1,..., N) at the k*" frequency bin
(k=1,...,K/2+1). Inorder to smooth this detailed frequency
resolution, we separated the 33 frequency bins into 7 bands of 5
bins (except the last band with 3 bins) named b%, i = 1,...,7.
Based on these we computed the following:

the first four moments of the absolute

~ T
1. {b‘} : the mean over all bins in each band i.
i=1
~ 17 ~
2. {d‘} : The absolute 1st order difference of b; across
i=1

éi(m)—éi(m_l)(.

: The absolute 1st order difference of i)z across

windows, i.e. d'(m) =

3@,
frequency bands, i.e. &'(m) = ‘lg”l(m) —b'(m)|.
This feature extraction process resulted in a 240-dimensional fea-
ture vector (48 features for each window length).
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5. Experiments
The purpose of our experiments is to show that there is a di-
rect link between levels of socio-cognitive demand and affective
mechanisms. Through a classification task we will show that chil-
dren’s physiological patterns differ between regions of long and
short verbal response latency and that there exist multiple arousal
levels across subjects.

5.1. Methods

5.1.1. Feature Selection

To reduce the dimensionality of the original feature vector we
sorted the features (Section 4) according to the Fisher discrimi-
nant ratio criterion. We then computed the correlation of every
pair and out of each pair with correlation larger than 0.5, we omit-
ted the feature with the lower Fisher discriminant ratio.

5.1.2. Classification

We used K-nearest neighbor (KNN) to classify between short
and long verbal response latency. The experiments were done
using leave-one-instance-out cross-validation, where “instance”
denotes a verbal response latency instance. We experimented
with number K of nearest neighbors between 1 to 40 with step
5. In each fold, we performed feature selection based on the train
data and then selected the same features on the test data. We did
these experiments for each child separately, because we wanted
to study the unique individual trends of each child with respect to
their behavior and their physiology.

5.2. Results
Our classification results range between 50.30% and 70.30%,
suggesting that EDA signals contain information relevant to the
amount of verbal response latency. We notice a great difference
in performance across subjects, reflective of the heterogeneity
prevalent in this population. Specifically EDA cues of subjects
S3, S4, S6 and S9 seem more reflective of the kind of verbal re-
sponse latency than the corresponding patterns of subjects S1, S2
and S7. We will discuss more about this in section 6. The un-
weighted classification accuracy (with chance 50%) for K = 15
nearest neighbors is shown in Table 3. K = 15 was empirically
found to give better performance

Examining the classification performance for the different
lengths of Rachel’s turns effect intervals, we notice that the most
discriminative duration lies between 5 and 8 seconds. The per-
formance usually drops for effect intervals larger than 9 seconds,
suggesting that the effect of Rachel’s turn stimuli to the child’s in-
ner response degrades after this time. We also notice that the du-
ration of the best effect interval is not consistent across children,
enhancing the original assumption of variability across subjects.

We examined the most frequently selected features over all
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lengths of Rachel’s turns effect intervals for each child (Table
2). It is noteworthy that for all children the most usually selected
features are the first three order moments of the physiological sig-
nal. This suggests that time domain features, mainly associated
with the arousal levels, are important for our task. The next most
frequent features differ across children and belong to all three
groups of features described in Section 4. This finding supports
the assumption of uniqueness of personal traits across children.

Table 2: Most frequently selected EDA features for classifying
verbal response latency.

comfortable in responding to Rachel’s turns no matter the task,
consistent with the reasoning why their EDA cues were not very
informative with respect to the verbal response latency type. In
contrast, subjects S3 and S9 sometimes appeared troubled and
confused, indicating high stress and cognitive activity levels re-
flecting on their EDA response as well.

Table 4: EDA means (in p.S) over short and long verbal response
latency intervals and p-values of bootstrap hypothesis test on the
difference of means for each child (0* denotes <0.01).

‘ [Subject | ST [ S2 [ 53 | S4 [ S5 | 56 | S7 [ S8 | 59 ]
[ Subj. ]| Most frequendy selected EDA features | short 0027 [ 07 [ 052 | 054 | 726 | 081 | 064 | 055 | 1.29
S1 21, ¥, 3, Pmh, by, Vhwr long 0.029 | 0.93 0.37 0.53 7.06 | 0.85 0.63 0.51 1.01
s2 21, 2. 23, Pmh, Vmw, bg p-value 0* 0 | o+ | 042 | 0% | 011 | 064 | 0.01 | 0%
S3 %1, @a, &3, Pmh, ba, 53, €3 .
s4 @1, @3, 3, Pn, du, éo 7. Conclusions and Future Work
Py S : T . . . . . .
S5 L1, T2, T3 Vmh, Vhwr{ 512 This study provides a novel analysis of physiological signals of
22 L1, %2, T3, Vm; dgf 6612’ <1 children with autism in association with their expressive behav-
E1: 22 75 261 21 7 ioral cues. The results suggest that EDA response of children
S8 Z1, £o, £3, Pmh, Vhwr, bg . . '
) 1. s, &3, Ph, by, 61,52 with autism can reflect the amount of their verbal response la-

Table 3: Unweighted success percentages of verbal response la-
tency type classification based on physiological cues for different
length of Rachel’s turns effect intervals.

. Length of Rachel’s turns effect intervals (sec)

’ Subject ‘ 5 6 7 8 9 10
S1 50.30 49.00 47.92 4741 46.75  47.54
S2 5190 4443 4721 47.55 4820  48.85
S3 56.04 5637  59.09 60.54 59.57  59.00
S4 63.36 6230 5989 59.16 5516  57.09
S5 5085 5033 51.67 5444 53778  55.53
S6 58.52 5897 5795 5737 5829 57.80
S7 50.83 50.09 50.02 5043 49.53 4991
S8 5491 5395 5093 4816 46.07 4570
S9 6735 6690 6898 7030 69.36  68.50

6. Discussion
In section 5.2, we saw that there is wide variability across sub-
jects with respect to our task. This suggests that there might
be mechanisms triggered in subjects with high classification ac-
curacy, reflected onto their physiological signals, which are not
present in subjects with low classification accuracy.

Looking at the original EDA signals, we notice that there is
a difference in the arousal levels between the two types of verbal
response latencies, depending on the child. For each subject we
perform a bootstrap hypothesis test on the difference of means of
x measured over the intervals of short and long verbal response
latencies. Subjects S1 and S2 have significantly lower arousal
levels during short response latency intervals. This might sug-
gest that EDA of these children is consistent with the task effect,
since long latency instances are usually associated with more de-
manding socio-cognitive tasks. However, this is not the case for
subjects S3, S5, S8 and S9, for which the mean arousal at short
latency instances is greater than the corresponding arousal at long
latency instances. This high arousal during a generally low men-
tal load situation could indicate the underlying presence of in-
tense affectivity for subjects with ASD, not directly triggered by
environmental stimuli and not always obvious though traditional
observational cues. This is an important observation, with impli-
cations for developing analytical tools of stratifying social inter-
action behavior of children, and in informing interface designs
that are sensitive to the child’s true affective state.

Linking our classification results with the above statistical
test we could assume that subjects’ S1 and S2 EDA responses are
more similar to the typical population. In fact, going through the
audiovisual recordings, we observed that these subjects seemed
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tency with respect to a stimuli and can be further related to the
amount of underlying socio-cognitive activity, not always obvi-
ous through traditional observational methods.

One limitation of this study is that it relies on observational
cues concerning only turn-taking duration measures. Future work
plans to examine expressive cues with a more detailed analysis of
children’s acoustic, lexical and visual gestural features, in order
to see if these can be linked with their inner physiological signals.
In our future work we will also explore if the concurrent parent’s
physiology can give additional information on observational cues
and if it can be associated with the child’s physiological state.
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